Joint Web-Feature (JFEAT): A Novel Web Page Classification Framework
نویسندگان
چکیده
With the increasing amount of web pages over the internet, it has been a major concern to obtain information on the internet accurately at a reasonable cost with decent performance. A potential solution is through the classification of web pages into meaningful categories. An effective classification of web pages is of benefit to various applications such as web mining and search engines. Unlike text documents, the nature of web pages limits the performance of successful traditional pure-text classification methods. Noises exist in the form of HTML tags, multimedia contents, dynamic contents and the network structure of web pages which requires a deeper look into effective feature selection of web pages. Often, these features are filtered out relying on the displayed texts of the web page for classification. This paper proposed a framework where web page features are taken into consideration during classification of the web page due to the potential valuable information that might be stored within each of the features. For this reason, this paper explores the potential of the universal Resource Locator (URL), web page title as well as the metadata for information to be used in classification with various categories defined by the users. The framework then explores suitable machine learning algorithms for individual classification of each web feature. The results would then be used for weighted voting to obtain the classification of that webpage. This approach showed improvements over pure-text as well as virtual-webpage classification approaches.
منابع مشابه
A Novel Approach to Feature Selection Using PageRank algorithm for Web Page Classification
In this paper, a novel filter-based approach is proposed using the PageRank algorithm to select the optimal subset of features as well as to compute their weights for web page classification. To evaluate the proposed approach multiple experiments are performed using accuracy score as the main criterion on four different datasets, namely WebKB, Reuters-R8, Reuters-R52, and 20NewsGroups. By analy...
متن کاملExperiments in Web Page Classification for Semantic Web
We address the problem of web page classification within the framework of automatic annotation for Semantic Web. The performance of several classification algorithms is explored on the Four Universities dataset using page text and link information, with a limited-size feature set. Several well-known classification algorithms are evaluated on the task of web-page classification using the text of...
متن کاملCost-Sensitive Feature Extraction and Selection in Genre Classification
Automatic genre classification of Web pages is currently young compared to other Web classification tasks. Corpora are just starting to be collected and organized in a systematic way, feature extraction techniques are inconsistent and not well detailed, genres are constantly in dispute, and novel applications have not been implemented. This paper attempts to review and make progress in the area...
متن کاملWeb Page Cleaning for Web Mining through Feature Weighting
Unlike conventional data or text, Web pages typically contain a large amount of information that is not part of the main contents of the pages, e.g., banner ads, navigation bars, and copyright notices. Such irrelevant information (which we call Web page noise) in Web pages can seriously harm Web mining, e.g., clustering and classification. In this paper, we propose a novel feature weighting tec...
متن کاملA Novel Noise-Robust Texture Classification Method Using Joint Multiscale LBP
In this paper we describe a novel noise-robust texture classification method using joint multiscale local binary pattern. The first step in texture classification is to describe the texture by extracting different features. So far, several methods have been developed for this topic, one of the most popular ones is Local Binary Pattern (LBP) method and its variants such as Completed Local Binary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010